Transgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice.
نویسندگان
چکیده
To investigate the role of complement in lupus nephritis, we used MRL/lpr mice and a transgene overexpressing a soluble complement regulator, soluble CR1-related gene/protein y (sCrry), both systemically and in kidney. Production of sCrry in sera led to significant complement inhibition in Crry-transgenic mice relative to littermate transgene negative controls. This complement inhibition with sCrry conferred a survival advantage to MRL/lpr mice. In a total of 154 animals, 42.5% transgene-negative animals had impaired renal function (blood urea nitrogen > 50 mg/dl) compared with 16.4% mice with the sCrry-producing transgene (p < 0.001). In those animals that died spontaneously, MRL/lpr mice with the sCrry-producing transgene did not die of renal failure, while those without the transgene did (blood urea nitrogen values of 46.6 +/- 9 and 122 +/- 29 mg/dl in transgene-positive and transgene-negative animals, respectively; p < 0.001). Albuminuria was reduced in those transgenic animals in which sCrry expression was maximally stimulated (urinary albumin/creatinine = 12.4 +/- 4.3 and 36.9 +/- 7.7 in transgene-positive and transgene-negative animals, respectively; p < 0.001). As expected in the setting of chronic complement inhibition, there was less C3 deposition in glomeruli of sCrry-producing transgenic mice compared with transgene-negative animals. In contrast, there was no effect on glomerular IgG deposition, levels of anti-dsDNA Ab and rheumatoid factor, or spleen weights between the two groups. Thus, long-term complement inhibition reduces renal disease in MRL/lpr mice, which translates into improved survival. MRL/lpr mice in which complement is inhibited still have spontaneous mortality, yet this is not from renal disease.
منابع مشابه
Decreased expression of the Ets family transcription factor Fli-1 markedly prolongs survival and significantly reduces renal disease in MRL/lpr mice.
Increased Fli-1 mRNA is present in PBLs from systemic lupus erythematosus patients, and transgenic overexpression of Fli-1 in normal mice leads to a lupus-like disease. We report in this study that MRL/lpr mice, an animal model of systemic lupus erythematosus, have increased splenic expression of Fli-1 protein compared with BALB/c mice. Using mice with targeted gene disruption, we examined the ...
متن کاملExcessive matrix accumulation in the kidneys of MRL/lpr lupus mice is dependent on complement activation.
Complement receptor 1-related gene/protein y (Crry) in rodents is a potent membrane complement regulator that inhibits complement C3 activation by both classical and alternative pathways. Complement inhibition with Crry as the recombinant protein Crry-Ig has been demonstrated to prevent MRL/MpJ-Tnfrsf6(lpr) (MRL/lpr) mice from developing proteinuria and renal failure. Crry-Ig-treated mice also ...
متن کاملExpression of natural autoantibodies in MRL-lpr mice protects from lupus nephritis and improves survival.
Natural autoantibodies (NAA) and their associated B cells constitute a substantial proportion of the normal Ab and B cell repertoire. They often have weak reactivity toward a variety of self-Ags such as DNA, nucleoproteins, and phospholipids. It remains controversial whether NAA contribute to or protect from autoimmune diseases. Using site-directed transgenic (sd-tg) mice expressing a prototypi...
متن کاملMonocyte Chemoattractant Protein 1–Dependent Leukocytic Infiltrates Are Responsible for Autoimmune Disease in Mrl-Faslpr Mice
Infiltrating leukocytes may be responsible for autoimmune disease. We hypothesized that the chemokine monocyte chemoattractant protein (MCP)-1 recruits macrophages and T cells into tissues that, in turn, are required for autoimmune disease. Using the MRL-Fas(lpr) strain with spontaneous, fatal autoimmune disease, we constructed MCP-1-deficient MRL-Fas(lpr) mice. In MCP-1-intact MRL-Fas(lpr) mic...
متن کاملEnhanced expression of the soluble form of E-selectin attenuates progression of lupus nephritis and vasculitis in MRL/lpr mice
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that causes inflammatory tissue damage, including lupus nephritis and vasculitis. Local generation of adhesion molecules and expression of their ligands on inflammatory cells appears to contribute to the progression of SLE. We found significantly increased E-selectin expression in the glomeruli and renal interstitial microvascul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 168 7 شماره
صفحات -
تاریخ انتشار 2002